About me

I’m an individual machine learning researcher. Prior to this, I was a postdoctoral researcher at Mila and Université de Montréal under the supervision of Prof. Yoshua Bengio. I earned Ph.D degree from KAIST under the supervision of Prof. Sung Ju Hwang.

Research Interest

My research interest include

  • System 2 Deep Learning
  • Generative Flow Networks (GFlowNet)
  • Bayesian Inference and Learning
  • Meta-Learning / Multi-Task Learning / Transfer Learning
  • AutoML

Contact

haebeom dot lee at kaist dot ac dot kr

Awards

  • Global Ph.D Fellowship Program, 2019-2021
  • Google Ph.D Fellowship Program 2021
  • Outstanding reviewer (ICML2020 - Top 33%, ICML2022 - Top 10%)

New Preprints

  • Dataset Condensation with Latent Space Knowledge Factorization and Sharing

    [paper]
    Hae Beom Lee*, Dong Bok Lee*, Sung Ju Hwang
    (*: equal contribution)
    arXiv, 2022

  • Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation

    [paper]
    Dong Bok Lee, Aoxuan Silvia Zhang*, Byungjoo Kim*, Junhyeon Park*, Juho Lee, Sung Ju Hwang, Hae Beom Lee
    (*: equal contribution)
    arXiv, 2024

Conference Publications

  • Delta-AI: Local Objectives for Amortized Inference in Sparse Graphical Models

    [paper]
    Jean-Pierre René Falet*, Hae Beom Lee*, Nikolay Malkin*, Chen Sun, Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie, Yoshua Bengio
    (*: equal contribution)
    ICLR 2024

  • Online Hyperparameter Meta-Learning with Hypergradient Distillation

    [paper]
    Hae Beom Lee, Hayeon Lee, Jaewoong Shin, Eunho Yang, Timothy M. Hospedales, Sung Ju Hwang
    ICLR 2022 (spotlight)

  • Sequential Reptile: Inter-Task Gradient Alignment for Multilingual Learning

    [paper]
    Seanie Lee*, Hae Beom Lee*, Juho Lee, Sung Ju Hwang
    (*: equal contribution)
    ICLR 2022

  • Meta-Learning Low Rank Covariance Factors for Energy-Based Deterministic Uncertainty

    [paper]
    Jeffrey Ryan Willette, Hae Beom Lee, Juho Lee, Sung Ju Hwang
    ICLR 2022

  • Large-Scale Meta-Learning with Continual Trajectory Shifting

    [paper] [code]
    Jaewoong Shin*, Hae Beom Lee*, Boqing Gong, Sung Ju Hwang
    (*: equal contribution)
    ICML 2021

  • MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures

    [paper] [code]
    Jeongun Ryu*, Jaewoong Shin*, Hae Beom Lee*, Sung Ju Hwang
    (*: equal contribution)
    NeurIPS 2020 (spotlight)

  • Meta-Learning for Short Utterance Speaker Recognition with Imbalance Length Pairs

    [paper] [code]
    Seong Min Kye, Youngmoon Jung, Hae Beom Lee, Sung Ju Hwang, and Hoirin Kim
    Interspeech 2020

  • Meta Variance Transfer: Learning to Augment from the Others

    [paper]
    Seong Jin Park, Seungju Han, Ji-won Baek, Insoo Kim, Juhwan Song, Hae Beom Lee, Jae-Joon Han and Sung Ju Hwang
    ICML 2020

  • Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks

    [paper] [code]
    Hae Beom Lee*, Hayeon Lee*, Donghyun Na*, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang
    (*: equal contribution)
    ICLR 2020 (oral presentation)

  • Meta Dropout: Learning to Perturb Latent Features for Generalization

    [paper] [code]
    Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang
    ICLR 2020

  • DropMax: Adaptive Variational Softmax

    [paper][code]
    Hae Beom Lee, Juho Lee, Saehoon Kim, Eunho Yang, Sung Ju Hwang
    NeurIPS 2018

  • Uncertainty-Aware Attention for Reliable Interpretation and Prediction

    [paper][code]
    Jay Heo*, Hae Beom Lee*, Saehoon Kim, Juho Lee, Kwang Joon Kim, Eunho Yang, Sung Ju Hwang
    (*: equal contribution)
    NeurIPS 2018

  • Deep Asymmetric Multi-task Feature Learning

    [paper][code]
    Hae Beom Lee, Eunho Yang, Sung Ju Hwang
    ICML 2018

Old Preprints

  • Meta-Learned Confidence for Few-shot Learning

    [paper][code]
    Sung Min Kye, Hae Beom Lee, Hoirin Kim, Sung Ju Hwang
    arXiv, 2020

  • Adaptive Network Sparsification with Dependent Variational Beta-Bernoulli Dropout

    [paper][code]
    Juho Lee, Saehoon Kim, Jaehong Yoon, Hae Beom Lee, Eunho Yang, Sung Ju Hwang
    arXiv, 2018